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Abstract

In a video surveiltance domain. mixture models are used
in conjunction with a variety of features and filters to
detect and track moving objects. However, these systems
do not provide clear performance results at the pixel
detection level. In this paper. we apply the mixture modecl
to provide several fusion strategies based on the competi-
tive and cooperative principles of integration which we
call OR, and, AND swategies. In addition, we apply the
Dempster-Shafer method to mixture models for object
detection. Using two video databases, we show the per-
formance of cach fusion strategy using receiver operating
characteristic (ROC) curves.

Index terms: Fusion, Mixture Model, Dempster-Shafer.

1. INTRODUCTION

With the advent of newer, much improved and inexpen-
sive tmaging technologics, video has found its way into
mainstream of computation and everyday life. Naturaily,
emerging technologics and advancements in signal/image
processing and computer vision are providing applica-
tions that werc not feasible a decade ago. A prevailing
application is to use cameras to detect, recognize and
track moving objects. For example, cameras are installed
on a highway to inform any anemalies such as traffic
Jjams. A typical parking lot can be surveyed, a train sta-
tion can be monitored for vandalism, a high school pe-
rimeter can be checked for intruders and so on [1]. A
complete automated surveillance system needs to ad-
dress three major problems: Detection, Recognition and
Event Handling. Regazzoni, et.al [2], provide a research
overview in advanced video based surveillance systems.
Motien detection is the key research area as the first step
is appiied 1o subsequent processing stages of recognition
and event handling.

The state of the camera and the world can be divided inte
4 categories: |) Stationary Camera, Stationary Object
{SCS0), 2) Stationary Camera, Moving Objects (SCMO),
3) Moving Camera, Staticnary Object (MCSO) , 4)
Moving Camera Moving Objects (MCMO). In most of
the scenarios we mentioned, the SCMO is the most appli-
cable.

One can simply apply, to a single frame, a feature-based
segmentation algorithm and then find correspondence
between frames to detect moving objects [3,4]. These
techniques are not generally robust to illumination
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changes and noise. Since, video, at 30 frames a second
provides a huge amount of data and statistics, one may be
able to abserve a great number of images in a short pe-
riod of time and make some statistical estimation on how
the scene is represented/modeled. More recently, mixture
of Gaussian models [3] have been utilized to detect
moving objects [6-8]. It is tn this context that we would
like to address the detection problem and how sensor
fuston can enhance the results. The focus of this paper is
the stage where moving objects must first be distin-
guished from their surrounding background.

The contribution of the paper is the development of sen-
sor fusion techniques in the context of mixture model.
We furnish detection results at the pixel level and show
that our fusion strategies not only outperform a single
sensor system, but also thcy compete with cach other.
Under different scenarios, our AND strategy outperforms
the Dempster-Shafer (D-S) strategy. In addition, we pro-
vide the logic behind each strategy and in which strategy
may be appropriate for various applications.

2. OBJECT DETECTION AND RELATED RESEARCH

Figure | shows a typical locp of a system using statistical
modeling. The first step is to model each pixel. This is
usualty done by collecting statistics on some recent time
window and estimating the distribution in some
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Figure 1. System for detecting moving objects

Models

parametric form. Pixel distribution is cstimated via mix-
ture model and each component of the mixture can be
estimated using clustering algorithms such as K-means or
techniques such as Expected-Maximization. In the second
step, as incoming pixels arrive, they must be checked
against the background model. Usually a statistical test is
used to classify the pixel as either a foreground or a
background pixel. For example, a pixel value that is not
within three standard deviation distance of any of the
mixture models is considered foreground, otherwise, it is
considered background. Depending on the outcome of
this step, classifying pixels as foreground or background,
the next step, model update, decides how to modify the
parameters of the models to account for the new infor-



mation, The adaptive procedures account for the dynam-
ies of the background, such as stow changes of sun’s
illumination or rapid appearance of cloud covers. This
stage enables the system to adapt to certain changes in the
scene and continue to function under environmental
changes.

The result of the detection is normally a binary image (or
a mask of the moving pixels) that is noisy and requires
some kind of filtering. Most systems enhance the output
by incorporating features and tracking algorithms. Even
though good macro {Object) results have been reported at
close ranges, it is not known whether the detection result
is as good at the micro (pixel} level. The problem is that
even though the whole system may work well, one may
not know how much contribution cach part of the system
provides. For example. if we do not utilize any ad hoc
filtering, it is possible to get erratic recognition and
tracking results due to the noise.

In our research we investigate the performance of such
algorithms at the pixel level and provide fusion aigo-
rithms operating at different points of receiver operating
characteristics {ROC) curve.

2.1  Statistical Based Appreaches

In a perfect static world, an image of a static background
would look the same at all times. One can simply take a
snapshot image of the background and then subtract it
from the incoming images to distinguish new objects
entering or moving in the scene. This simple technique
has been used to detect objects [9]. However, the world is
neither perfectly static nor noise free. Statistical models
have been proposed to mode! the noise and dynamics of
the scene.

One of the early works utilizing the statistical modeling
of the background is Pfinder [0). In Pfinder, people are
detected and tracked in an indoor scene with controlled
illumination environment. Each pixel in an image of a
video stream is viewed as an independent statistical proc-
ess; therefore, assuming Gaussian noise, a background
pixel is modeled as

exp [;—(O-u)TK"(o—,u)]

plo) = o
(2m) 2 |K|2
where [ and K are the mean and covariance of the dis-
tribution of a pixel in YUV plane. Pfinder accommodates
for the camera and ambient noise in an indoor environ-
ment; however, it cannot account for large dynamics (in
the background) encountered in outdoor scenes where a
stew of physical phenomenon such as wind, temperature,
cloud covers, sun angle , rain, snow etc. can affect the
sensor readings, not to mention the noise due to the sen-
sor itself. A closely related project to Pfinder, called
VSAM [7], tries to address these problems for an outdoor

scenario where background could be highly dynamic.
Like Pfinder it views each pixel as an independent statis-
tical process; however, each pixel is modeled based on
the fit of recent observations [1..1-1] to N Gausstan mix-
ture models. Formally, if x, is the intensity of a pixel at
time 1, then,

N
px) = 3, mGilx;,0)

i=1
where, p(x,) is the probability of observing value x at
time t, m; is the weight , or prior, of the G;-th distribution
and @ characterizes the distribution. New pixels are
checked against the pdf and if they do not fit any of the
model’s, they are classified as foreground. Furthermore,
incoming pixels can contribute to the models and cach
pixel’s model can change and adapt to the dynamics of
the background. It is worth noting that the results are
usually given in the form of the number of correct people
or moving objects detected. It is not clear what the per-
formance is at the pixel level. We provide several scnsor
fusion technigues that could be applied to this statistical
modeling. Wec observe that each fusion technique oper-
ates at a different point on the ROC curve. Moreover,
Dempster-Shafer technique is utilized with the mixture
model to provide a statistically sound fusion technique. .

3. TECHNICAL APPROACH

Our approach is similar to the system shown in Figure 1.
We employ several fusion sirategies to improve the re-
sults.

3.1 Motivation For Fusion

An operator of a surveillance system monitoring pedes-
trians in close view of a camera may tolerate many un-
detected pixels and some incorrectly detected pixels since
the size of the objects compensate for it. On the other
hand, an observation post cannot afford loosing any ob-
ject pixels, since the objects it is monitoring are far away
and they have only a few pixels on them. It may tolerate
only a few incotrectly detected pixels, it is desired to
have low false alarms while not loosing any of the object
pixels.

Imagine now that we have several sensors looking at the
same object and their signais are co-registered. In the
pedestrian monitoring system, the operator may be satis-
fied if only one of the sensors strongly suggests that the
pixel is background since there are plenty of opportuni-
ties to find object pixels and it is not desired to process
too many noisy pixels. On the other hand, an observation
post, will not like to miss an object that is abeut to harm
it. Therefore, it is desired to have higher confidence that
the object (pixel) is background, so one may require all or
majority of the sensors to strongly agree that the observed
pixel is background before dismissing it. This provides
opportunity to incorporate fusion techniques into the
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detection phase of a mixture model, Of course, we are
making the following underlyving asumptions. a} we have
multiple sensors, b) each sensor signal is independent,
and c) all sensor signals are registered at the pixel level.

3.2 Fusion Approach

Sensor fusion [10] has been exploited in many domains
such as image enhancement . target detection. medical
diagnostics etc. The methods proposed for fusion arc as
diverse as the applications. Some methods simply access
and manipulate signals while others apply sophisticated
statistical theories at the decision level. Brooks and lyen-
gar [11] describe three main sensor configurations, com-
plementary, competitive, and cooperative. In our experi-
ments we use sensors that have different spectral sensi-
tivitics to Red. Green and Blue components of the color
camera signal. Each sensor is looking at the same phe-
nomenon in the scene and is providing independent
measurements:  fience.  sensor  configuration can  be
thought of as either cooperative or competitive. The re-
suit of the measurements arc in the form of the mixture of
Gaussian probability density functions (pdfs); therefore,
each sensor provides a set of models which represents
some aspect of the world (dynamics of the background of
the physical world}.

Formally, the following procedure is performed :

Recent history of each pixel {X,,...X.} is modeled by a
mixture of K Gaussians :

rix )= i w,_,xﬂ[x,-,u,,[ r):,-‘.]

nlx, 1.2)= ;1 evg("“"“‘ j= (wmpt)
271-?1213

Mixture Model for a Pixel
For each Pixel

- Collect initial data (F Frames)

- Cluster data to K clusters (K-means)

- For each Cluster Fit a Gaussian (1, Z)
end

3.2.1  Fusion Strategies

After the. initial model building, we are at the second
phase, the detection phase (see Figure 1). Unlike other
approaches, the sensitivity of our system can be deter-
mitted based on the user’s need. We provide the follow-
ing fusion strategies and explain the logic behind them.

G, = { Gaussian Parameters } for channel ¢ where ¢
€ {R701B}1

Pr = R Value of the incoming pixel P,

Pg = G Value of the incoming pixel P,

Pg = B Value of the incoming pixel P,

83 : Means within 3 Standard Deviation (of R,G, or B),

t : Some threshold.

Strategy 1 —(OR) Competitive
Let Prob.(P.) : probability of pixel P for channel ¢ where
ce RGB
if 3 ¢, such that Preb(P,) 2 t then P € Background
Strategy 2 —(AND) Cooperative
if ¥ ¢, Prob{P) 2 t then P e Background
where Prob (P} can be estimated from the current mix-
ture model.
Strategy 3 ©

if (PRS;Gr) OR
Then P € Background
Strategy 4 :
if (PrS;Gr) AND
Then P & Background
Strategy 5 -
if: {(PrS; Gu) AND [(P55;Gg) OR (PyS3Gg)l
OR (P83 Gg) AND [(PgS; Gg) OR (PpS;Gy)l
OR (PpS;Gg) AND | (PpS5; Gr) OR (PcSiGg)l
} Then P € Background

(PgS; Gg) OR (PyS; Gy)

(P58yGg) AND (Py8; Gy)

The following observation can be made from the above
strategics. First, strategy 4 15 a special case of strategy 5.
Second, both strategy 3 and strategy 4 arc really special
cases of strategy 1 and strategy 2. One may ask, then why
we have introduced strategies 3,4, and 5. In real time
applications such as video surveillance, one can save a
great deal of computation time by making simple stan-
dard deviation test. However, Startegies 1 and 2 provide
(t) which ts a sensitive parameter that can be adjusted by
the user to operate the detection module at different
points on the ROC curve. Generally the ciass of strategies
such as strategy 2 are more desirable where penalty for
missing object is high. This is in contrast with classes
falling into strategy | when we expect lower detection.

3.2.2  Dempster-Shafer (D-S) Strategy

So far, we have assumed two classes, foreground and
background. Qur decision, proposition, has been simple,
a pixel that is not foreground is considered background or
vice versa. In another words :

probibackround) + prob(foreground) = 1,

Since we are dealing with pdfs, there are some uncer-
tainty issues involved. In other words, the decision that a
pixel is foreground or background is uncertain. We can
only classify the data according to our confidence.
Dempster-Shafer [13] provide a naturat approach to sen-
sor fusion. In the context of mixture model, the threshold,
t, can be associated with confidence interval. For exam-
ple, if our threshold is 3 standard deviation, then the
confidence interval will be approximately $9.8%. Confi-
dence interval values can be readily calculated given the
threshold. In statistics, the confidence interval is the
complement of the critical region; we associate the criti-
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cal regions to the foreground and confidence intervals to
uncertainty. Within the uncertainty of our model we can
then define the probability of the background ciass. In
other words, the closer the observed value of a pixel is to
the mean, the higher 1ts background probability and the
lower the uncertainty probability. see Figure 2.

With this notion. cach pdf contributes not only to the
amount of belief that the pixel is background but also to
uncertaintics of the belief {or disbeiief}, Dempster-Shafer
rule of combination can then be applicd to each pixel's
probabilities and decision will be based on the highest
belief. Formalty, we define the following: let 8 be a
frame of discernment. which is the set of mutually exclu-
sive atomic propositions, exactly one of which corre-
sponds to the truth, Foreground or Background. Then the
probability mass function m in the power set of @ is
defined as follows : Let A be a proposition,
Ne<=m(A)<=1TforevervAin @
Hm(9)=0
DNEmA)=1 VAC 8
A Belief function B is then defined according to the fol-
lowing ruies ;1) Bel{¢) =0:2) Bel(8) =1
3)Ac B c 8 — Bel(A) € Bel(B)
Bel(A) = Zm(B)
BcA

The following, Dempster’s rule of combination, for three
sensor is then defined :

> myA) m;(8) my(C)
m]g] (D) — Ac0,8c8,Cc0,AnNBNC=D

> my(A) m(8) my(C)

AcH,8c 8,0, AnBNCxp

Where {AB,C,D}c 6 are atomic propositions. The
atomic propositions in our case are Foreground F, Back-
ground B and Uncertainty U. We obtain each sensor’s
probability contribution to each of the propositions, as
follows :

5]
p(F) =2x§n:n,- jN,(W
=1 oo

n

X
p(B) = 2xi_r:r,v;[N,-(qJ) iftysxst,
N B

0 Otherwise
n 0
.U(U) =2x ZTC,‘ IN,((P)
i=l X

where 0 is the number of mixture models, N i{¢) is the ith,
Gaussian density function in the mixture model with
parameters @, ; is the weight or prior of the ith pdf in the
mixture and is measured by the cluster size contributing

to that pdf, t is a threshold and x is the observed value of
the pixel. As shown in Figure 2, for a given threshold, the
larger the probability of the backgreund, the smaller the
uncertainty is and vice versa. Given a value of x for a
pixel we can compute the probabilities (regions in Figure
2} and apply the Dempster-Shafer combination rule to
classify the pixel as background cr foreground.

t X

Figure 2. Associated probabilities for background
P(B), foregrond P(F), and uncertainty P(U), x = pixel
value, t = thresheld. for a singic Gaussian density in
the mixture. (Note: for simplicity only a single Gaus-
sian is drawn. The probability regions for all Gaus-
sians in the mixture model are defined similarly).

An example:

For sake of simplicity and clarity we use two sensors
with n=1. Let’s say two sensors, make the following
probability observations about a pixel.

Sensor 2
U=0.1
B=0.4
i
F=0.5 "
F=0.1 B =02 U=0.7
Sensor 1

F, B and U are probabilities of Foreground, Background
and Uncertainty, respectively. They correspond to the
lighter shade, darker shade and white region of Figure 2
respectively. The shaded area in the table above repre-
sents contradiction; since contradictions do not represent
any reality of the world they are not considered in the
belief functions. Applying the dempster’'s combination
rule: m;(B) = 0.44 and m;; (F) = 0.47 and the pixel is
classified as forground.

4. EXPERIMENTAL RESULTS

4.1 Data

We used two outdoor video sequences taken at different
time, with different object distance and environmental
conditions. We opt for short video shots where environ-
mental conditions do not radically change so, there is no
need for adaptation for the number of Gaussians used in
the background model. The first sequence of 900 frames,
(Figure 3) was taken in an afternoon sunny summer day
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with subject in close proximity to the camera. The second
sequence of 1200 frames (Figure 4) was taken on an
overcast day and the moving object was approximately
300 feet away. We obtained the ground truth (Figure 5)
by randomly selecting a frame from the MPEG stream,
then carefully drawing a contour over the moving ob-
jeet(s) circumscribing all the pixels that had changed
including moving shadows. A Sony DCR-VX1000 digital
camera with dichroic prism and three CCD sensors, cach
with different spectral sensitivity o the red, green and
blue region of the spectrum. was utilized.

280

Frame: 172

et

Figure 3. Sequence 1

Frame: 500

Figure 5. Ground truth images from Sequence 1

4.2 Performance Measuire

We show the receiver operating characteristic curves for
detection based on mixture model and our fusion strate-
gies. Let

N = Number of moving object pixels in Ground Truth
image,

o= Number of moving object pixels that the algorithm
did not detect (i.e., missed), .

B = number of Background pixels (Ground Truth),

B = number of background pixels that were detected as
foreground. ‘

Figure 6. Illustration of background and foreground
resgions.
Therefore, confusion matrix can be given as

Ground Truth Ground Truth
Foreground Background
Detected N-o ]
Foreground
Detected a B-B
Background
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We can define the Probability of detection and Probabil-
ity of false alarms as :

Pd=(N-a)/N Pf=3/8B.
We used the above equations to obtain the ROC curves
for detection performance of a single sensor, and using
OR, AND and D-S strategies.

4.3 Experiments

We have developed a detection system based on the
mixture model described previously. in sequence |
(Figure 3). the first 120 frames were used for initial ¢lus-
tering and building the mixture model. The number of
Gaussians, were user selectable: we experimented with 2,
S and 10. A binary mask of the moving object and its
shadow was then obrained for four randomly selected
frames (Figure 5). Different Fusion algorithms were then
run on the whole MPEG video sequence. For comparison
we also implemented and tested the Dempster-Shafer (D-
S) strategy. For cach strategy and a single sensor we
obtained ROC curves for four selected frames for se-
quence | (Figure 3).

Figure 7, indicates that both thc OR and the AND fusion
strategies outperformed the single sensor. We observed
that the AND strategy had detccted the most number of
object pixels with comparable false alarms.

ROC Curve
Fusion Wvs. No Fusion

£ —— Single Sensor
0.9 —— Stratagyi
—— Strategye
0.85
o 0.5 1

Pf
Figure 7. Performance of single sensor vs. multiple
sensors with OR (Strategy1) and AND (Stategy2)

As indicated by the ROC curves {Figures 11 and 12), the
D-§ strategy performed betwecn the OR and the AND
strategies. Moreover, the AND strategy detected more
object pixels while still holding low false alarms com-
pared to the other strategies. This is evident in the right
most frame of Figure 8 and Figure 9, corresponding to
frame 598 of Figure 3. The results were far more dra-
matic when object was relatively small. The AND strat-
egy detected more object pixels than the other two with
some small increase in the false alarm rate (Figure 10).
These strategies provide the opportunity for the user to
operate the system at different sensitivity points on the
ROC curve. In general, the OR and the D-S strategy
provided less noise but detected less object pixels vs. the
AND strategy where most object pixels were detected but
at a higher false alarm rate. This indicates that the AND
strategy may be more suitable to scenes where objects are



small and the OR strategy may be morc suitable to scenes
with large objects. D-S strategy, on the other hand, pro-

vides a compromise between the two,

Figure 8. Result of the OR strategy for sequence 1

(d)

(e)

Figure 10. a} A frame from sequence 2, b) ground
truth ¢) OR strategy, d} D-S strategy, e} AND strat-
egy results.

Sequence 1

RQC{OR, DS, AND) n=2,5,10

] 2

- 0.9 —— D5
— - QR

0.65 e AND

0.8

0.75

0 0.2 0.4 0.6 0.8 1

Pf

Figure 11. ROC curves for OR, AND and D-S strate-

gies, averaged over n = 2,5,10 mixture models and
frames,
Sequence 2
ROC(AND,DS,CR) n=5

_4—’_’/

0.8 - ]

0.6 )
—— AND

0.4 — DS )
— _ OR

0.2 .

0 0.5 1

Pt

Figure 12. ROC Curve for sequence 2 for various
strategies.

322

5.

CONCLUSIONS

In this paper, we provided three basic fusion strategies in

the

contexi of mixture model for detection in outdoor

scenes. Our results show that fusion is not only an effec-
tive approach to mixiure model based detection system
but also choosing different strategies affects the outcome
of the final detection. We have shown that choosing a
competitive, OR. vs. cooperative. AND and D-S, strate-
gics. do make a difference. High detection at very low
false alarm is achieved for the AND strategy. Our results
also indicate that the AND strategy is a viable fusion
strategy for relatively small moving objects at intermedi-
ate distances. A simple size filter can also be urilized to
eliminate isolated pixels. This further reduces false
alarms.

In our future work. we plan to investigate the effect of
optimally choosing the number of models. and provide
more sensors such as infrared (IR). We arce also currently
investigating the problem cf moving shadows and how to
eliminate them.
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